Abstract
The photocatalytic reduction of harmful nitrates (NO3-) in strongly acidic wastewater to ammonia (NH3) under sunlight is crucial for the recycling of limited nitrogen resources. This study reports that a naturally occurring Cl--containing iron oxyhydroxide (akaganeite) powder with surface oxygen vacancies (β-FeOOH(Cl)-OVs) facilitates this transformation. Ultraviolet light irradiation of the catalyst suspended in a Cl--containing solution promoted quantitative NO3--to-NH3 reduction with water under ambient conditions. The photogenerated conduction band electrons promoted the reduction of NO3--to-NH3 over the OVs. The valence band holes promoted self-oxidation of Cl- as the direct electron donor and eliminated Cl- was compensated from the solution. Photodecomposition of the generated hypochlorous acid (HClO) produced O2, facilitating catalytic reduction of NO3--to-NH3 with water as the electron donor in the entire system. Simulated sunlight irradiation of the catalyst in a strongly acidic nitric acid (HNO3) solution (pH ∼ 1) containing Cl- stably generated NH3 with a solar-to-chemical conversion efficiency of ∼0.025%. This strategy paves the way for sustainable NH3 production from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.