Abstract

Reverse water gas shift (RWGS) reaction is an intriguing strategy to realize carbon neutrality, however, the endothermic process usually needs high temperature that supplied by non-renewable fossil fuels, resulting in secondary energy and environmental issues. Photothermal catalysis are ideal substitutes for the conventional thermal catalysis, providing that high reaction efficiency is achievable. Two-dimensional (2D) materials are highly active as RWGS catalysts, however, their industrial application is restricted by the preparation cost. In this study, a series of 2D Co-based catalysts for photothermal RWGS reaction with tunable selectivity were prepared by self-assembly method based on cheap amylum, by integrating the 2D catalysts with our homemade photothermal device, sunlight driven efficient RWGS reaction was realized. The prepared 2D Co0.5Ce0.5O x exhibited a full selectivity toward CO (100%) and could be heated to 318 °C under 1 kW m−2 irradiation with the CO generation rate of 14.48 mmol g−1 h−1, pointing out a cheap and universal method to prepare 2D materials, and zero consumption CO generation from photothermal RWGS reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.