Abstract

Design of direct Z-scheme heterojunction photocatalyst is considered as an effective strategy to fully use the high redox potential photogenerated charge carriers. This work reports a novel method for investigating the photosynergistic performance of the Z-scheme MoO3/Bi2O3/g-C3N4 (MBG) photocatalyst with peroxymonosulfate (PMS) for the solar degradation of tetracycline hydrochloride (TCH), a model of organic pollutants in wastewater. The results showed a better strategy to activate PMS via accelerating the redox cycle (Mo6+/Mo5+), which ultimately induces the successive generation of highly reactive oxygen species. The effect of dosage of the catalyst, PMS, pH of the solution, initial concentrations of TCH and the presence of inorganic anions were investigated. It was found that the degradation of the TCH under sunlight irradiation (SL) was strongly enhanced by the presence of the PMS as an electron acceptor. The MBG/PMS/SL system was able to degrade an initial concentration (40 mg/L) of the TCH solution within 140 min. The good reusability and stability of the MBG catalyst were evaluated by recycling the degradation experiment. The main free radicals are OH and SO4─ which played an important role in the degradation reaction were identified by scavenger experiments and confirmed by EPR spectroscopy. X-ray photoelectron spectroscopy (XPS) study revealed the role of molybdenum ion in the activation process of PMS. The possible synergistic degradation reaction mechanism was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call