Abstract

Solar Photo-Fenton reaction, using FeSO4 and H2O2, is an effective and energy-efficient advanced oxidation process (AOP) for degradation of pesticides. However, a major environmental concern is whether the net toxicity after the photo-Fenton process is within the tolerance limit of the aquatic plants and animals, since the unreacted pesticide and Fenton’s reagent may impart additional toxicity to the treated water. Here, we report the oxidative removal of dichlorvos pesticide in wastewater by solar photo-Fenton reaction along with the residual toxicity analysis of the treated water on an aquatic alga. It was found that at pH 3, dichlorvos, with an initial concentration of 6.9 × 10−5 mol L−1, was observed to be fully degraded within a batch time of 120 min, though the corresponding reduction of chemical oxygen demand (COD) was about 53 % signifying incomplete mineralisation. In order to predict the transient concentration profiles of dichlorvos under different initial concentrations, a four-parameter mathematical model was formulated. Additionally, the resultant toxicity was also examined using a model blue-green alga Nostoc sp. Compared to the raw wastewater, the net biomass of chlorophyll-a was found to increase significantly. Respective estimate of the protein concentration also indicated the same trend. Therefore, sunlight-assisted photo-Fenton process may be regarded as an effective and safe technique for the treatment of pesticide-contaminated agricultural wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call