Abstract

Sun-induced chlorophyll fluorescence (SiF) is increasingly used as a proxy for vegetation canopy photosynthesis. While ground-based, airborne, and satellite observations have demonstrated a strong linear relationship between SiF and gross primary production (GPP) at seasonal scales, their relationships at high temporal resolution across diurnal to seasonal scales remain unclear. In this study, far-red canopy SiF, GPP, and absorbed photosynthetically active radiation (APAR) were continuously monitored using automated spectral systems and an eddy flux tower over an entire growing season in a rice paddy. At half-hourly resolution, strong linear relationships between SiF and GPP (R2 = 0.76) and APAR and GPP (R2 = 0.76) for the whole growing season were observed. We found that relative humidity, diffuse PAR fraction, and growth stage influenced the relationships between SiF and GPP, and APAR and GPP, and incorporating those factors into multiple regression analysis led to improvements up to R2 = 0.83 and R2 = 0.88, respectively. Relationships between LUEp (=GPP/APAR) and LUEf (=SiF/APAR) were inconsistent at half-hourly and weak at daily resolutions (R2 = 0.24). Both at diurnal and seasonal time scales with half-hourly resolution, we found considerably stronger linear relationships between SiF and APAR than between either SiF and GPP or APAR and GPP. Overall, our results indicate that for subdiurnal temporal resolution, canopy SiF in the rice paddy is above all a very good proxy for APAR at diurnal and seasonal time scales and that therefore SiF-based GPP estimation needs to take into account relevant environmental information to model LUEp. These findings can help develop mechanistic links between canopy SiF and GPP across multiple temporal scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call