Abstract

Accurate identification and monitoring of sunflower capitula are crucial for field phenotypic analysis, cultivation management, phenological monitoring, and yield prediction. Manual observation, however, faces significant challenges due to the complexity of field environments and the morphological diversity of sunflower capitula. Unmanned Aerial Vehicles (UAVs) have emerged as an ideal platform for monitoring sunflower capitula due to their low cost and high spatiotemporal resolution. This study introduces Sunflower-YOLO, an enhanced model based on YOLOv7-tiny, designed for detecting sunflower capitula in UAV remote sensing images. The model effectively identifies sunflower capitula and distinguishes between three specific states: open, half-open, and bud. Sunflower-YOLO incorporates several key improvements: the SiLU activation function replaces the original LeakyReLU, enhancing the model’s nonlinear expression capability; a shallow high-resolution feature map and an additional detection head for small targets are introduced during the feature fusion stage to improve the detection performance of small capitula; and the integration of deformable convolution and the SimAM attention mechanism enhances the ELAN structure in the backbone, creating a new DeformAtt-ELAN structure that improves the model’s ability to capture morphological variations and reduces noise interference. Experimental results demonstrate that Sunflower-YOLO achieves precision, recall, and mAP@0.5 of 92.3%, 89.7%, and 93%, respectively, marking improvements of 4.2%, 4.2%, and 3.7% over the original YOLOv7-tiny model. The average precision (AP) for the three growth states is 98.7%, 93.4%, and 87%, with AP for the half-open and bud states improving by 6.5% and 4.7%, respectively. The model’s FLOPs is 17.7G, its size is 13.8MB, and it achieves an FPS of 188.52. Compared to current mainstream state-of-the-art (SOTA) models for object detection, Sunflower-YOLO achieves the highest mAP@0.5 in detecting multiple types of sunflower capitula. The constructed capitulum density map offers a practical view for observing sunflower growth status. This study highlights the immense potential of combining UAV remote sensing technology with YOLO object detection algorithms in monitoring sunflower capitula and their growth processes, providing an innovative and effective approach for precision agriculture practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.