Abstract
AbstractDimensional stability, mechanical properties, and melting and crystallization behavior of polypropylene composites filled with sunflower seed cake (SSC) were investigated. Injection molded composites were prepared from the SSC flour and polypropylene with and without maleic anhydride‐grafted polypropylene (MAPP) at 30, 40, 50, and 60 wt % contents of the SSC flour. Twenty‐eight days thickness swelling and water absorption values of the specimens increased by 43 and 56% as the filler content increased from 30 to 60 wt %, respectively. The flexural modulus of the polypropylene composites increased from 3157 to 4363 MPa as the SSC flour increased from 30 to 60 wt %. The maximum flexural strength 38.4 MPa was observed for 40 wt % SSC flour filled specimens. However, further increment in the SCC flour decreased the flexural strength to 31.4 MPa. The tensile strength of the specimens decreased from 22.5 to 14 MPa while the tensile modulus increased from 3023 to 3677 MPa as the SSC flour increased from 30 to 60 wt %. The dimensional stability and mechanical properties of the composites were significantly improved by the incorporation of the coupling agent (MAPP). The effect of the MAPP addition was more pronounced for the strength than for the modulus. The melting temperature and degree of crystallinity of the neat polypropylene decreased with increasing content of the SSC flour. The degree of crystallinity of filled composites considerably increased with the incorporation of the MAPP. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.