Abstract

Growth and differentiation factor 15 (GDF15), an anorexigenic peptide that represents a promising candidate for anti-obesity treatment, acts via GDNF Family Receptor Alpha Like (GFRAL), which is expressed almost exclusively on a subset of neurons in the area postrema (AP). To determine the function and mechanisms of action for GFRAL neurons, we generated Gfralcre and conditional GfralCreERT mice. Although their chemogenetic (DREADD-mediated) activation promoted FOS in a variety of brainstem, hypothalamic, and limbic nuclei, GFRAL neurons projected only to the nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN), where they innervated and activated aversive/anorexigenic GCRP-expressing cells. Tetanus-toxin-mediated silencing of PBN CGRP neurons abrogated the aversive and anorexic effects of GDF15. Furthermore, while non-gastrointestinal (GI) stimuli (e.g., GDF15 and LPS, but not feeding or gut peptide mimetics) activated GFRAL neurons, chemogenetically activating these cells decreased gastric emptying, suppressed feeding, and promoted a conditioned taste aversion. These findings suggest that GFRAL neurons link non-GI anorexigenic signals to the control of gut physiology and to the aversive suppression of food intake. Additionally, because the chemogenetic activation of GFRAL neurons suppressed food intake more strongly than GDF15 in lean mice, additional modes of activating GFRAL neurons may augment the anorectic potential of GDF15.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.