Abstract

ABSTRACT We analyze multi-spacecraft observations associated with the 2012 July 12 coronal mass ejection (CME), covering the source region on the Sun from the Solar Dynamics Observatory, stereoscopic imaging observations from the Solar Terrestrial Relations Observatory (STEREO), magnetic field characteristics from Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER), and type II radio burst and in situ measurements from Wind. A triangulation method based on STEREO stereoscopic observations is employed to determine the kinematics of the CME, and the outcome is compared with the results derived from the type II radio burst using a solar wind electron density model. A Grad–Shafranov technique is applied to Wind in situ data to reconstruct the flux-rope structure and compare it with the observations of the solar source region, which helps in understanding the geo-effectiveness associated with the CME structure. Our conclusions are as follows: (1) the CME undergoes an impulsive acceleration, a rapid deceleration before reaching MESSENGER, and then a gradual deceleration out to 1 au, which should be considered in CME kinematics models; (2) the type II radio burst was probably produced from a high-density interaction region between the CME-driven shock and a nearby streamer or from the shock flank with lower heights, which implies uncertainties in the determination of CME kinematics using solely type II radio bursts; (3) the flux-rope orientation and chirality deduced from in situ reconstructions at Wind agree with those obtained from solar source observations; (4) the prolonged southward magnetic field near the Earth is mainly from the axial component of the largely southward inclined flux rope, which indicates the importance of predicting both the flux-rope orientation and magnetic field components in geomagnetic activity forecasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call