Abstract

Polycystic ovary syndrome (PCOS) is a reproductive disorder in women characterized by hyperandrogenemia, anovulation, cystic ovaries, and LH hyper-pulsatility, but the mechanisms causing the pathophysiology remain incompletely understood. We recently reported a novel mouse model that recapitulates the majority of PCOS phenotypes in adulthood. Females given constant, long-term letrozole to reduce aromatase activity demonstrate PCOS-like phenotypes, including polycystic ovaries, anovulation, elevated circulating testosterone, and increased LH. In vivo LH pulsatile secretion, which is greatly elevated in PCOS women, was not previously studied, nor were possible changes in reproductive neurons known to control GnRH/LH secretion. Here, we used recent technical advances in the field to examine in vivo LH pulse dynamics of freely-moving LET female mice versus control and ovariectomized (OVX) mice. We also studied whether hypothalamic gene expression of several important reproductive regulators, kisspeptin, neurokinin B (NKB), and dynorphin, is altered in LET females. Compared to controls, LET females exhibited very rapid, elevated in vivo LH pulsatility, with increased pulse frequency, amplitude, and basal levels, similar to PCOS women. LET mice also had markedly elevated Kiss1, Tac2, and Pdyn expression along with increased Kiss1 neuron activation in the hypothalamic arcuate nucleus. Although elevated, most hyperactive LH pulse parameters and increased arcuate mRNA measures of LET mice were significantly lower than in OVX littermates. Our findings demonstrate that LET mice, like PCOS women, have markedly elevated LH pulsatility which likely drives increased ovarian androgen secretion. Increased arcuate kisspeptin and NKB levels may be fundamental contributors to the enhanced stimulation of LH pulse secretion in this PCOS-like condition, and perhaps, in some PCOS women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call