Abstract

A striking number of SNPs and rare mutations have been identified in PCSK1, the gene that codes for the enzyme proprotein convertase 1/3 (PC1/3) which proteolytically activates prohormones within the secretory pathway. All infants bearing two copies of catalytically inactivating mutations, including G209R, exhibit severe neonatal malabsorption requiring parenteral nutrition for months and subsequently develop additional endocrinopathies, often including diabetes and obesity. In order to create a mouse model to explore the underlying mechanism of the malabsorption phenomenon and the endocrinopathies, a G209R point mutation was introduced into exon 6 of mouse Pcsk1 using CRISPR-Cas9 genome editing. Fifty-six live pups were collected at postnatal days one or two; however, most homozygous G209R mutant pups succumbed by day 2, and surviving pups were severely dwarfed. In homozygous, but not heterozygous pups, blood glucose levels were significantly lower with elevated plasma insulin-like immunoreactivity and accumulation of unprocessed proinsulin in G209R pancreas compared to the wild type pups from the same litters. The POMC product α-MSH (produced by PC2 from PC1/3-generated ACTH) has been strongly implicated in obesity mechanisms. We found pituitary POMC processing to ACTH was also affected by the G209R mutation in combined anterior and intermediate pituitary lobes. ACTH was markedly reduced in homozygote pituitary, with significant accumulation of POMC. Using Western blotting, we observed a significant reduction in PC1/3 protein in homozygote brains, while PC2 protein levels remained unaffected. Most likely due to the continued presence of PC2, pituitary and brain levels of α-MSH were not impaired, suggesting that α-MSH itself is not involved in the phenotype. Prior studies have shown that G209R PC1/3 is not efficiently trafficked out of the ER; further studies will examine the contribution of misfolded G209R PC1/3 to possible cellular ER stress, as well as determine peptide hormone levels in brain and peripheral tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.