Abstract

Lagrange's Four Squares Theorem states that any positive integer can be expressed as the sum of four integer squares. We investigate the analogous question over Quaternion rings, focusing on squares of elements of Quaternion rings with integer coefficients. We determine the minimum necessary number of squares for infinitely many Quaternion rings, and give global upper and lower bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.