Abstract

AbstractLet be a finite, connected graph. We consider a greedy selection of vertices: given a list of vertices , take to be any vertex maximizing the sum of distances to the vertices already chosen and iterate, keep adding the “most remote” vertex. The frequency with which the vertices of the graph appear in this sequence converges to a set of probability measures with nice properties. The support of these measures is, generically, given by a rather small number of vertices . We prove that this suggests that the graph G is, in a suitable sense, “m‐dimensional” by exhibiting an explicit 1‐Lipschitz embedding with good properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.