Abstract

In this paper, we study the asymptotic distribution of coefficients of general L-functions over arithmetic progressions without the Ramanujan conjecture. As an application, we consider the high mean of Fourier coefficients of holomorphic forms or Maass forms for Γ=SL(2,Z) over arithmetic progressions, and improve the results of Jiang and Lü [10]. Our new results remove the restriction to prime module and improve the interval length of module q.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.