Abstract

Plants monitor their surrounding ambient light environment by specialized photoreceptor proteins. Among them, phytochromes monitor red and far-red light. These molecules perceive photons, undergo a conformational change, and regulate diverse light signaling pathways, resulting in the mediation of key developmental and growth responses throughout the whole life of plants. Posttranslational modifications of the photoreceptors and their signaling partners may modify their function. For example, the regulatory role of phosphorylation has been investigated for decades by using different methodological approaches. In the past few years, a set of studies revealed that ubiquitin-like short protein molecules, called small ubiquitin-like modifiers (SUMOs) are attached reversibly to different members of phytochrome signaling pathways, including phytochromeB, the dominant receptor of red light signaling. Furthermore, SUMO attachment modifies the action of the target proteins, leading to altered light signaling and photomorphogenesis. This review summarizes recent results regarding SUMOylation of various target proteins, the regulation of their SUMOylation level, and the physiological consequences of SUMO attachment. Potential future research directions are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call