Abstract
The RNA helicase DDX39A plays an important role in the RNA splicing/export process. In our study, human DDX39A facilitated RNA virus escape from innate immunity to promote virus proliferation by trapping TRAF3, TRAF6, and MAVS mRNAs in the HEK293T cell nucleus. DDX39A was a target for SUMOylation. SUMO1, 2, and 3 modifications were found on immunoprecipitated DDX39A. However, only the SUMO1 modification decreased in vesicular stomatitis virus-infected HEK293T cells. Further studies have found that viral infection reduced SUMO1 modification of DDX39A and enhanced its ability to bind innate immunity-associated mRNAs by regulating the abundance of RanBP2 with SUMO1 E3 ligase activity. RanBP2 acted as an E3 SUMO ligase of DDX39A, which enhanced SUMO1 modification of DDX39A and attenuated its ability to bind RNA. This work described that specific mRNAs encoding antiviral signaling components were bound and sequestered in the nucleus by DDX39A to limit their expression, which proposed a new protein SUMOylation model to regulate innate immunity in viral infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.