Abstract

SUMOylation is an essential post-translational modification system with the ability to regulate nearly all aspects of cellular physiology. Three major paralogues SUMO1, SUMO2and SUMO3 form a covalent bond between the small ubiquitin-like modifier with lysine residues at consensus sites in protein substrates. Biochemical studies continue to identify unique biological functions for protein targets conjugated to SUMO1 versus the highly homologous SUMO2 and SUMO3 paralogues. Yet, the field has failed to harness contemporary AI approaches including pre-trained protein language models to fully expand and/or recognize the SUMOylated proteome. Herein, we present a novel, deep learning-based approach called SumoPred-PLM for human SUMOylation prediction with sensitivity, specificity, Matthew's correlation coefficient, and accuracy of 74.64%, 73.36%, 0.48% and 74.00%, respectively, on the CPLM 4.0 independent test dataset. In addition, this novel platform uses contextualized embeddings obtained from a pre-trained protein language model, ProtT5-XL-UniRef50 to identify SUMO2/3-specific conjugation sites. The results demonstrate that SumoPred-PLM is a powerful and unique computational tool to predict SUMOylation sites in proteins and accelerate discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.