Abstract
Tumor suppressor Smad4/DPC4 is a central intracellular signal transducer for transforming growth factor-beta (TGF-beta) signaling. We recently reported that transcriptional potential of Smad4 was regulated by SUMOylation in transfected HeLa cells (1), but the precise mechanism and function of Smad4 SUMOylation in TGF-beta signaling remain to be elucidated. Here, we describe the regulation of TGF-beta signaling by SUMOylation through the control of Smad4 metabolic stability and subcellular localization. We found that SUMO-1 overexpression strongly increases Smad4 levels, while inhibition of SUMOylation by small interfering RNA (siRNA)-mediated knockdown of the E2 enzyme Ubc9 reduces endogenous Smad4 levels. Concomitantly, SUMO-1 overexpression enhances and Ubc9 knockdown reduces levels of intranuclear Smad4, growth inhibitory response, as well as transcriptional responses to TGF-beta. Comparison of wild type and mutant forms of Smad4 for SUMOylation, ubiquitination, and half-life allows the conclusion that SUMO-1 modification serves to protect Smad4 from ubiquitin-dependent degradation and consequently enhances the growth inhibitory and transcriptional responses of Smad4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.