Abstract

Mixing layer height (MLH) is a crucial parameter for air quality modelling that is still not routinely measured. Common methods for MLH determination use atmospheric profiles recorded by radiosonde but this process suffers from coarse temporal resolution since the balloon is usually launched only twice a day. Recently, cheap ceilometers are gaining popularity in the retrieval of MLH diurnal evolution based on aerosol profiles. This study presents a comparison between proprietary (Jenoptik) and freely available (STRAT) algorithms to retrieve MLH diurnal cycle over an urban area. The comparison was conducted in the summer season when MLH is above the full overlapping height of the ceilometer in order to minimize negative impact of the biaxial LiDAR’s drawback. Moreover, fogs or very low clouds which can deteriorate the ceilometer retrieval accuracy are very unlikely to be present in summer. The MLHs determined from the ceilometer were verified against those measured from the radiosonde, which were estimated using the parcel, lapse rate, and Richardson methods (the Richardson method was used as a reference in this study). We found that the STRAT and Jenoptik methods gave lower MLH values than radiosonde with an underestimation of about 150 m and 650 m, respectively. Additionally, STRAT showed some potential in tracking the MLH diurnal evolution, especially during the day. A daily MLH maximum of about 2000 m was found in the late afternoon (18–19 LT). The Jenoptik algorithm showed comparable results to the STRAT algorithm during the night (although both methods sometimes misleadingly reported residual or advected layers as the mixing layer (ML)). During the morning transition the Jenoptik algorithm outperformed STRAT, which suffers from abrupt changes in MLH due to integrated layer attribution. However, daytime performance of Jenoptik was worse, especially in the afternoon when the algorithm often cannot estimate any MLH (in the period 13–16 LT the method reports MLHs in only 15–30% of all cases). This makes day-to-day tracing of MLH diurnal evolution virtually impracticable. This problem is possibly due to its early version (JO-CloVis 8.80, 2009) and issues with real-time processing of a single profile combined with the low signal-to-noise ratio of the ceilometer. Both LiDAR-based algorithms have trouble in the evening transition since they rely on aerosol signature which is more affected by the mixing processes in the past hours than the current turbulent mixing.

Highlights

  • The effect of air quality on human health is a serious problem, especially in densely populated areas

  • mixing layer height (MLH) derived by different algorithms over three summer months from radiosonde and ceilometer data were analysed and compared

  • It was shown that the Richardson and parcel methods produce identical MLHs which indicates that mixing layer (ML) is primarily thermally driven while the lapse-rate method underestimates the MLH

Read more

Summary

Introduction

The effect of air quality on human health is a serious problem, especially in densely populated areas. Key input parameters of these models are meteorological variables, which are needed to be identified in order to calculate the production, diffusion, transport and scavenging of atmospheric pollutants. These harmful substances are dispersed vertically within. Near-ground pollution levels will depend on the mixing layer height (MLH) since it constrains the dispersion volume. The MLH is vitally important to be identified especially in urban areas where pollution sources and inhabitants are much greater [3,4,5,6,7,8,9,10]. MLH is worthwhile to be continuously monitored and compared with parametrizations in numerical weather and/or pollution prediction models [12,13,14]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call