Abstract

Abstract The application of a simple analytic boundary layer model developed by Thorpe and Guymer did not produce good agreement with observational data for oceanic low-level jet observations even though this model has worked well for the predictions of low-level jets over continental surfaces. This failure to properly predict the boundary layer wind maxima was very puzzling because more detailed numerical boundary layer models have properly predicted these low-level oceanic wind maxima. To understand the reasons for its failure to explain the ocean observations, the authors modified the frictional terms in the horizontal linear momentum equations of Thorpe and Guymer, using a standard eddy viscosity closure technique instead of the Rayleigh friction parameterization originally used. This improvement in the modeling of the dissipation terms, which has resulted in the use of an enhanced Rayleigh friction parameterization in the horizontal momentum equations, modified the boundary layer winds such that the continental predictions remained nearly identical to those predicted previously using the Thorpe and Guymer model while the oceanic predictions have now become more representative of the measured wind speed from recent Arctic expeditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.