Abstract

First, we briefly review the atmospheric chemistry and previous intercomparison measurements for HCHO, with special reference to the diffusion scrubber Hantzsch reaction based fluorescence instrument used in the field studies reported herein. Then we discuss summertime HCHO levels in five major U.S. cities measured over 1999-2002, primarily from ground-based measurements. Land-sea breeze circulations play a major role in observed concentrations in coastal cities. Very high HCHO peak mixing ratios were observed in Houston (>47 ppb) where the overall median mixing ratio was 3.3 ppb; the corresponding values in Atlanta were approximately >18 and 7.9 ppb, respectively. The peak and median mixing ratios (9.3 and 2.3 ppb) were the lowest for Tampa, where the land-sea breeze also played an important role. In several cities, replicate HCHO measurements were made by direct spectroscopic instruments; the instruments were located kilometers from each other and addressed very different heights (e.g., 106 vs 10 m). Even under these conditions, there was remarkable qualitative and often quantitative agreement between the different instruments, when they were all sampling the same air mass within a short period of each other. Local chemistry dominates how HCHO is formed and dissipated. The high concentrations in Houston resulted from emissions near the ship channel; the same formaldehyde plume was measured at two sites and clearly ranged over tens of kilometers. Local micrometeorology is another factor. HCHO patterns measured at a high-rise site in downtown Nashville were very much in synchrony with other ground sites 12 km away until July 4 celebrations whence HCHO concentrations at the downtown site remained elevated for several days and nights. The formation and dissipation of HCHO in the different cities are discussed in terms of other concurrently measured species and meteorological vectors. The vertical profiles of HCHO in and around Tampa under several different atmospheric conditions are presented. The extensive data set represented in this paper underscores that urban HCHO measurements can now be made easily; the agreement between disparate instruments (that are independently calibrated or rely on the absolute absorption cross section) further indicates that such measurements can be done reliably and accurately for this very important atmospheric species. The data set presented here can be used as a benchmark for future measurements if the use of formaldehyde precursors such as methanol or methyl tert-butyl ether (MTBE) as oxygenated fuel additives increases in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.