Abstract

Despite the importance of precipitation and moisture transport over the Tibetan Plateau for glacier mass balance, river runoff and local ecology, changes in these quantities remain highly uncertain and poorly understood. Here we use observational data and model simulations to explore the close relationship between summer rainfall variability over the southwestern Tibetan Plateau (SWTP) and that over central-eastern India (CEI), which exists despite the separation of these two regions by the Himalayas. We show that this relationship is maintained primarily by ‘up-and-over' moisture transport, in which hydrometeors and moisture are lifted by convective storms over CEI and the Himalayan foothills and then swept over the SWTP by the mid-tropospheric circulation, rather than by upslope flow over the Himalayas. Sensitivity simulations confirm the importance of up-and-over transport at event scales, and an objective storm classification indicates that this pathway accounts for approximately half of total summer rainfall over the SWTP.

Highlights

  • Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), and the CAS Center for Excellence in Tibetan Plateau

  • We establish that summer rainfall over the southwestern Tibetan Plateau (TP) (SWTP) and central-eastern India (CEI) is closely related via a previously unreported ‘up-and-over’ moisture transport path, in which moist, cloud-laden air lifted by convective systems over CEI is swept over the SWTP by the mid-tropospheric circulation

  • Despite a large difference in rainfall magnitude across the Himalayas (Fig. 1a), significant decreasing trends have been observed over both the SWTP and central-eastern India (CEI; Fig. 1b)

Read more

Summary

Introduction

We establish that summer rainfall over the SWTP and CEI is closely related via a previously unreported ‘up-and-over’ moisture transport path, in which moist, cloud-laden air lifted by convective systems over CEI is swept over the SWTP by the mid-tropospheric circulation. This relationship is evident in both observational data sets and global climate model simulations, and depends on the coincident occurrence of convective systems over CEI and southwesterlies in the middle and upper troposphere over the Himalayas. The SWTP will be substantially drier without the up-and-over transport associated with convective systems over CEI

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.