Abstract

High tunnels have been shown to be a profitable season-extending production tool for many horticultural crops. Production of cool-season vegetables during the hot summer months represents a challenge to market growers in the midwestern United States. Two experiments were conducted to investigate the microclimate and production of eight leaf lettuce (Lactuca sativa) cultivars in high tunnels and open fields, using unshaded and shaded (39% white shadecloth) tunnels in Summer 2002 and 2003, respectively. Wind speed was consistently lower in high tunnels with the sidewalls and endwalls open. An unshaded high tunnel resulted in an increase of daily maximum and minimum air temperatures by ≈0.2 and 0.3 °C, respectively, in comparison with the open field. In contrast, daily maximum air temperature in a shaded high tunnel decreased by 0.4 °C, while the daily minimum air temperature was higher than that in the open field by 0.5 °C. Using high tunnels did not cause a marked change in relative humidity compared with the open field. When using shadecloth, the daily maximum soil temperature was lowered by ≈3.4 °C and the leaf surface temperature was reduced by 1.5 to 2.5 °C. The performance of lettuce during summer trials varied significantly among cultivars. Unshaded high tunnels generally led to more rapid bolting and increased bitterness of lettuce compared with the open field. Lettuce grown in high tunnels covered by shadecloth had a lower bolting rate, but decreased yield relative to the open field. Based on our results, summer lettuce production would not be recommended in high tunnels or open fields in northeastern Kansas, although the potential of shaded high tunnels deserves further studies. Reference crop evapotranspiration (ET0) was estimated from meteorological data on a daily basis using the FAO-56 method. The ET0 was lowest in the shaded high tunnel and was the highest in the open field. Relatively lower ET0 in high tunnels indicated a likely lower water requirement and therefore improved water use efficiency compared with the open field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.