Abstract

AbstractThe East/Japan Sea (EJS) is a highly productive marginal sea in the northwest Pacific, consisting of three basins (Ulleung Basin: UB, Yamato Basin: YB, and Japan Basin: JB). To find causes of the reportedly high primary productivity in summer in the EJS, especially in the UB, we measured primary productivity, phytoplankton composition, and other environmental variables. The water column was strongly stratified in the EJS compared with the Western Subarctic Pacific (WSP). Integrated primary productivity was two times higher in the EJS (612 mg C m−2 d−1) than in the WSP (291 mg C m−2 d−1). The vertical distributions of physicochemical and biological factors confirmed that production in the subsurface chlorophyll maximum layer in the study regions was an important factor regulating primary productivity within the water column. While picoplankton (<2.7 µm) dominated in the WSP, JB, and YB, micro/nanoplankton (≥2.7 µm) dominated in the UB. Contribution by picoplankton to total biomass and primary productivity in the UB was significantly lower than in the other regions. CHEMTAX analysis using marker pigments showed that diverse phytoplankton groups inhabited the study regions. Cluster and canonical correspondence analyses showed high correlation between the spatial variation in phytoplankton assemblages with the water mass properties mainly represented by water temperature and nitrate concentration. Overall, our results suggest that the hydrographic structure of water column in the study region is an important controlling factor of the biomass and productivity of phytoplankton as well as their diversity in size and taxonomic groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call