Abstract
Summer deposition of sulfate and reactive nitrogen (mainly nitrate, and ammonium) to two alpine valleys in the Southern Canadian Rocky Mountains was investigated to constrain their major sources and evaluate physiographic influences on deposition. The effects of elevation, aspect, and air mass trajectory were evaluated using stable isotope composition (δ15N–NO3−, δ18O–NO3−, and δ34S–SO42−) and major ion concentrations for bulk precipitation. Deposition in the two valleys was related to synoptic scale weather conditions and the route the air mass followed, the location of major emission sources relative to the study site, and atmospheric residence time. Distinct differences in deposition at a relatively small scale between two opposing alpine valleys was mainly related to the orientation of the two valleys relative to the physiography of the Western Canadian Cordillera and the dominant pathways of air mass transport. Sulfate was found to be dominantly from distant sources, while NO3− was strongly enhanced by emissions from local to regional combustion. Local to regional pollutants were preferentially transported to the NNW facing Robertson Valley during NW-upslope synoptic conditions while precipitation in the SE facing Haig Valley was from relatively clean air with minimal influence from local and regional pollutants particularly at the highest elevation site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.