Abstract
AbstractBased on the multi-model ensemble mean of CMIP6 simulations, the future changes in frequency, intensity and duration of Compound (both daytime and nighttime) heatwaves (HWs) in summer over China at various global warming levels (GWLs) under the SSP3-7.0 and SSP5-8.5 are assessed. HWs over China become more frequent and hotter, and the duration of HWs becomes longer compared to those in the recent climate. The magnitudes of these changes are primarily dependent on GWLs, but they are not very sensitive to the scenarios. At 4 ℃ GWL, the frequency of HWs increases by more than fivefold under both scenarios, and the intensity (duration) of HWs averaged under the two scenarios is 2.28 ℃ hotter (3.59 days longer) than the one in the recent climate over the entire China. Meanwhile, the maximum duration of HW events can reach more than 25 days in summer in comparison with 8 days in the recent climate. The changes in HW properties are regionally dependent at the four GWLs. For example, the largest increase in HW frequency is over the Northwest China, the largest increase in intensity in HWs is seen over the Northeast and Northwest, and the largest increase in HW duration is over the Southwest China. The extreme rare events (50-year and 100-year events) in the recent climate would become the norm over China and four sub-regions at 4 ℃ GWL. Overall, seasonal mean warming dominates the changes in HW properties over China at the different GWLs. The seasonal mean warming in summer across China is related to the increases of longwave radiation, partly due to increase in greenhouse gas forcing and partly resulted from increased water vapor and the increase of shortwave radiation (under the SSP5-8.5) over eastern China related to decreases in aerosols and total cloud cover. Furthermore, the regional variations in the water vapor over China are consistent with atmospheric circulation changes. The seasonal mean surface warming results in enhanced upward sensible and latent heat fluxes, leading to increased summer mean daily maximum and minimum of near-surface air temperature and the enhancement of HWs properties over the entire China. Changes of shortwave radiation tend to play a weaker role for surface warming under the SSP3-7.0 than those under the SSP5-8.5, which is related to increased aerosol changes under the SSP3-7.0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.