Abstract
We propose a new approach to the summation over dynamically triangulated Riemann surfaces which does not rely on properties of the potential in a matrix model. Instead, we formulate a purely algebraic discretization of critical string path integral. This is combined with a technique which assigns to each equilateral triangulation of a two-dimensional surface a Riemann surface defined over a certain finite extension of the field of rational numbers, i.e. an arthmetic surface. Thus we establish a new formulation in which the sum over randomly triangulated surfaces defines an invariant measure on the moduli space of arithmetic surfaces. It is shown that because of this it is far from obvious that this measure for large genera approximates the measure defined by the continuum theory, i.e. Liouville theory or critical string theory. In low genus this subtlety does not exist. In the case of critical string theory we explicity compute the volume of the moduli space of arithmetic surfaces in terms of the modular height function and show that for low genus it approximates correctly the continuum measure. We also discuss a continuum limit which bears some resemblance with a double scaling limit in matrix models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.