Abstract
Metabolic control analysis (MCA) was developed to quantify how system variables are affected by parameter variations in a system. In addition, MCA can express the global properties of a system in terms of the individual catalytic steps, using connectivity and summation theorems to link the control coefficients to the elasticity coefficients. MCA was originally developed for steady-state analysis and not all summation theorems have been derived for dynamic systems. A method to determine time-dependent flux and concentration control coefficients for dynamic systems by expressing the time domain as a function of percentage progression through any arbitrary fixed interval of time is reported. Time-dependent flux and concentration control coefficients of dynamic systems, provided that they are evaluated in this novel way, obey the same summation theorems as steady-state flux and concentration control coefficients, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.