Abstract
Summation-by-parts (SBP) operators are finite-difference operators that mimic integration by parts. The SBP operator definition includes a weight matrix that is used formally for discrete integration; however, the accuracy of the weight matrix as a quadrature rule is not explicitly part of the SBP definition. We show that SBP weight matrices are related to trapezoid rules with end corrections whose accuracy matches the corresponding difference operator at internal nodes. For diagonal weight matrices, the accuracy of SBP quadrature extends to curvilinear domains provided the Jacobian is approximated with the same SBP operator used for the quadrature. This quadrature has significant implications for SBP-based discretizations; in particular, the diagonal norm accurately approximates the L2 norm for functions, and multi-dimensional SBP discretizations accurately approximate the divergence theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.