Abstract

The lifetime of structural components of spallation targets (beam window, liquid metal container, return hull) is determined by the irradiation-induced changes of the mechanical properties of their materials. An extensive test program was initiated using specimens obtained from spent target components from operating spallation facilities (Los Alamos Neutron Science Center, LANSCE and the Spallation Neutron Source at Rutherford–Appleton Laboratory, ISIS). The investigated materials include a nickel-based alloy (IN 718), an austenitic stainless steel (AISI 304L), a martensitic stainless steel (DIN 1.4926) and a refractory metal (tantalum). The materials experienced 800 MeV proton irradiation to maximum fluences of >10 25 p/m 2. The mechanical property changes were investigated by microhardness measurements, three-point bending tests and tensile tests at temperatures ranging from room temperature (RT) to 250 °C. Subsequent scanning electron microscopy was employed to investigate the fracture surfaces. Generally, irradiation hardening and a decrease in ductility with increasing proton fluence was observed. Nevertheless, all materials except IN 718 tested at RT, retained some ductility up to the maximum doses explored. The transmission electron microscopy investigation showed that a high density of ‘black dots’ and dislocation loops appeared in all materials. No effect of long-range radiation-induced segregation at grain boundaries was detected by energy dispersive X-ray investigation on AISI 304L and IN718 which failed by intergranular fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.