Abstract

A present summary is assigned to present the transport characteristics of the free randomly moving (RM) electrons in silicon at any doping level by phosphorous donors. The application of the Fermi-Dirac statistics and stochastic description of the free RM electrons lead to obtaining the general expressions of conductivity, the effective density of the free RM electrons, their diffusion coefficient and the drift mobility, which are valid for silicon with any doping level. It is shown that drift mobility of the free RM electrons considerably exceeds the Hall mobility at heavy doping, and that the Einstein relation is fundamental and is conserved at any level of degeneracy. It is estimated what part of electrons in the conduction band of heavily doped silicon is not free and is coupled with phosphorous ions. The main conclusions and formulations can be applicable for holes in acceptor-doped silicon, and other homogeneous materials with one type of the free RM charge carriers as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.