Abstract
Nonpoint-source contamination of water resources from triazine herbicides has been a major water-quality issue during the 1990s in the United States. To address this issue, studies of surface water, ground water, and precipitation have been carried out by the U.S. Geological Survey in the Midwestern United States. Reconnaissance studies of 147 streams were conducted to determine the geographic and seasonal distribution of atrazine, cyanazine, propazine, and simazine. These studies showed that high concentrations of herbicides were flushed from cropland and transported through the stream system as pulses in response to spring and summer rainfall. The studies also revealed the persistence of herbicides and their degradation products in streams. An investigation of 76 reservoirs showed that the occurrence and temporal distribution of herbicides and their degradation products in reservoir outflow could be related to reservoir and drainage-basin characteristics, water and land use, herbicide use, and climate. Significant findings showed that concentrations of atrazine and its degradation products remained elevated all summer and into the fall and that recently applied atrazine mixed with atrazine applied the previous year as water moved through a reservoir. Reconnaissance studies of 303 ground-water wells were completed to determine hydrogeological and seasonal occurrence, concentration, and distribution of herbicides and their degradation products. Samples collected from across the Midwestern United States consistently revealed that triazine herbicide degradation products commonly were found more frequently than their parent herbicide and that ground-water age could be an important factor in explaining variations in herbicide contamination. A final study investigated precipitation in the Midwestern United States, northeast to the Atlantic Ocean, and northward to the Canadian border. It found that the highest herbicide concentrations in precipitation occurred following herbicide application to cropland. Atrazine was detected most often, followed by deethylatrazine, cyanazine, and deisoproplyatrazine. Mass deposition of herbicides by precipitation was greatest in areas where herbicide use was intense and decreased with distance from the Midwest. Findings of the 1990s studies include an improved understanding of the occurrence, persistence, chemistry, and transport of triazine herbicides and their degradation products in the hydrologic environment. A significant increase in knowledge of triazine herbicides and development and improvement of analytical methods were accomplished in the past decade. The results produced are not only significant for the present (2005) but provide an important data set for future use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.