Abstract

Traditionally, family-based samples have been used for genetic analyses of single-gene traits caused by rare but highly penetrant risk variants. The utility of family-based genetic data for analyzing common complex traits is unclear and contains numerous challenges. To assess the utility as well as to address these challenges, members of Genetic Analysis Workshop 16 Group 15 analyzed Framingham Heart Study data using family-based designs ranging from parent--offspring trios to large pedigrees. We investigated different methods including traditional linkage tests, family-based association tests, and population-based tests that correct for relatedness between subjects, and tests to detect parent-of-origin effects. The analyses presented an assortment of positive findings. One contribution found increased power to detect epistatic effects through linkage using ascertainment of sibships based on extreme quantitative values or presence of disease associated with the quantitative value. Another contribution found four single-nucleotide polymorphisms (SNPs) showing a maternal effect, two SNPs with an imprinting effect, and one SNP having both effects on a binary high blood pressure trait. Finally, three contributions illustrated the advantage of using population-based methods to detect association to complex binary or quantitative traits. Our findings highlight the contribution of family-based samples to the genetic dissection of complex traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call