Abstract

The simulation of the Auxiliary Charcoal Bed (ACB) Vacuum System was performed to evaluate the original vacuum system design, detect and identify design deficiencies, investigate the effects of proposed corrections on system performance, and generally aid in refining the system design before construction and mockup testing. The simulation was performed by using the Advanced Continuous Simulation Language (ACSL). The vacuum system design goals are to provide approximately 20 SCFM of both booster gas and purge gas through the system and maintain a flow of approximately 40 SCFM with a velocity of 50 to 75 f/sec at the entrance to the cyclone separator. The model results showed that the original system design was incapable of meeting the system performance goals. Further simulations showed that the following modifications to the original vacuum system design were required to make the system performance acceptable; (1) Remove valve PCV4. (2) Modify the flow controllers FTC3 and FTC4 from the original flow range of 0-17.6 SCFM (0-500 SLM) to 0-35.3 SCFM (0-1000 SLM). (3) Replace the bellows sealed valves SV-1, SV-3A, SV-3B, SV-4A, and SV-4B with less restrictive ball valves. The simulation results saved considerable time and effort by identifying flaws in the original system design. Early identification of these flaws and the use of the simulation model to investigate possible solutions allowed corrective modifications to be made before construction of the mock up test facility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.