Abstract
Multi-Agent Path Finding (MAPF) is well studied in both AI and robotics. Given a discretized environment and agents with assigned start and goal locations, MAPF solvers from AI find collision-free paths for hundreds of agents with user-provided sub-optimality guarantees. However, they ignore that actual robots are subject to kinematic constraints (such as velocity limits) and suffer from imperfect plan-execution capabilities. We therefore introduce MAPF-POST to postprocess the output of a MAPF solver in polynomial time to create a plan-execution schedule that can be executed on robots. This schedule works on non-holonomic robots, considers kinematic constraints, provides a guaranteed safety distance between robots, and exploits slack to avoid time-intensive replanning in many cases. We evaluate MAPF-POST in simulation and on differential-drive robots, showcasing the practicality of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.