Abstract

The nuclear matter equation of state (EOS) plays an important role in our understanding of nuclear bulk properties, as well as processes taking place in the stellar environments (i.e. dynamics of supernovae collapse and structure of neutron stars). The EOS also sheds light on the phase transitions taking place in the heavy ion collision reactions. Its exact determination is being pursued extensively, both experimentally and theoretically. Nuclear incompressibility is an important parameter of the nuclear matter EOS. The centroid energy of one of the nuclear compression modes – the isoscalar Giant Monopole Resonance (ISGMR) – is a direct experimental tool to constrain the value of nuclear matter incompressibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.