Abstract
During mass convergence events such as natural disasters, microblogging platforms like Twitter are widely used by affected people to post situational awareness messages. These crisis-related messages disperse among multiple categories like infrastructure damage, information about missing, injured, and dead people etc. The challenge here is to extract important situational updates from these messages, assign them appropriate informational categories, and finally summarize big trove of information in each category. In this paper, we propose a novel framework which first assigns tweets into different situational classes and then summarize those tweets. In the summarization phase, we propose a two stage summarization framework which first extracts a set of important tweets from the whole set of information through an Integer-linear programming (ILP) based optimization technique and then follows a word graph and content word based abstractive summarization technique to produce the final summary. Our method is time and memory efficient and outperforms the baseline in terms of quality, coverage of events, locations et al., effectiveness, and utility in disaster scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.