Abstract
SQL queries with group-by and average are frequently used and plotted as bar charts in several data analysis applications. Understanding the reasons behind the results in such an aggregate view may be a highly nontrivial and time-consuming task, especially for large datasets with multiple attributes. Hence, generating automated explanations for aggregate views can allow users to gain better insights into the results while saving time in data analysis. When providing explanations for such views, it is paramount to ensure that they are succinct yet comprehensive, reveal different types of insights that hold for different aggregate answers in the view, and, most importantly, they reflect reality and arm users to make informed data-driven decisions, i.e., the explanations do not only consider correlations but are causal. In this paper, we present CauSumX, a framework for generating summarized causal explanations for the entire aggregate view. Using background knowledge captured in a causal DAG, CauSumX finds the most effective causal treatments for different groups in the view. We formally define the framework and the optimization problem, study its complexity, and devise an efficient algorithm using the Apriori algorithm, LP rounding, and several optimizations. We experimentally show that our system generates useful summarized causal explanations compared to prior work and scales well for large high-dimensional data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.