Abstract

This paper develops a method for combining query-relevance with information-novelty in the context of text retrieval and summarization. The Maximal Marginal Relevance (MMR) criterion strives to reduce redundancy while maintaining query relevance in reranking retrieved documents and in selecting appropriate passages for text summarization. Preliminary results indicate some benefits for MMR diversity ranking in ad-hoc query and in single document summarization. The latter are borne out by the trial-run (unofficial) TREC-style evaluation of summarization systems. However, the clearest advantage is demonstrated in the automated construction of large document and non-redundant multi-document summaries, where MMR results are clearly superior to non-MMR passage selection. This paper also discusses our preliminary evaluation of summarization methods for single documents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.