Abstract

<abstract><p>Let $ H_A^{\vec{p}}(\mathbb{R}^n) $ be the anisotropic mixed-norm Hardy space, where $ \vec{p}\in(0, \infty)^n $ and $ A $ is a general expansive matrix on $ \mathbb{R}^n $. In this paper, a general summability method, the so-called $ \theta $-summability is considered for multi-dimensional Fourier transforms in $ H_A^{\vec{p}}(\mathbb{R}^n) $. Precisely, the author establishes the boundedness of maximal operators, induced by the so-called $ \theta $-means, from $ H_A^{\vec{p}}(\mathbb{R}^n) $ to the mixed-norm Lebesgue space $ L^{\vec{p}}(\mathbb{R}^n) $. As applications, some norm and almost everywhere convergence results of the $ \theta $-means are presented. Finally, the corresponding conclusions of two well-known specific summability methods, namely, Bochner–Riesz and Weierstrass means, are also obtained.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.