Abstract

The mechanisms that lead to the formation and the disappearance of prominences are poorly understood, at present. An arch-shaped prominence was observed with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on board the Solar and Heliospheric Observatory (SOHO) on 31 March–1 April 1996. The observations were performed at three wave-bands in the Lyman continuum. Ten successive images were obtained at 41-minute time intervals. Based on computed models of Gouttebroze, Heinzel, and Vial (1993), we have determined the temperature distribution of the prominence using the intensity ratio of 876 A and 907 A. The observed time sequence shows that parts of the prominence disappear possibly by heating, while other parts exhibit heating and cooling with apparent outward motion. We model the heat input with the linearized MHD equations using a prescribed initial density and a broad-band spectrum of Alfven waves. We find a good qualitative agreement with observations. In the model the prominence is heated by the resonant absorption of Alfven waves with frequencies that match the resonant condition for a particular flux tube structure that is determined by the magnetic field topology and plasma density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.