Abstract
In this paper, we derive sufficient conditions for the sum of two or more maximal monotone operators on a reflexive Banach space to be maximal monotone, and we achieve this without any renorming theorems or fixed-point-related concepts. In the course of this, we will develop a generalization of the uniform boundedness theorem for (possibly nonreflexive) Banach spaces. We will apply this to obtain the Fenchel Duality Theorem for the sum of two or more proper, convex lower semicontinuous functions under the appropriate constraint qualifications, and also to obtain additional results on the relation between the effective domains of such functions and the domains of their subdifferentials. The other main tool that we use is a standard minimax theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.