Abstract

In a random-scattering system, the deposition matrix maps the incident wavefront onto the internal field distribution across a target volume. The corresponding eigenchannels have been used to enhance the wave energy delivered to the target. Here, we find the sum rules for the eigenvalues and eigenchannels of the deposition matrix in any system geometry: including two- and three-dimensional scattering systems, as well as narrow waveguides and wide slabs. We derive a number of constraints on the eigenchannel intensity distributions inside the system as well as the corresponding eigenvalues. Our results are general and applicable to random systems of arbitrary scattering strength as well as different types of waves including electromagnetic waves, acoustic waves, and matter waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call