Abstract

Using a sum rule approach we investigate the dipole oscillation of a spin-orbit coupled Bose-Einstein condensate confined in a harmonic trap. The crucial role played by the spin polarizability of the gas is pointed out. We show that the lowest dipole frequency exhibits a characteristic jump at the transition between the stripe and spin-polarized phase. Near the second-order transition between the spin-polarized and the single minimum phase the lowest frequency is vanishingly small for large condensates, reflecting the divergent behavior of the spin polarizability. We compare our results with recent experimental measurements as well as with the predictions of effective mass approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.