Abstract

In the unmanned aerial vehicle (UAV) assisted non-orthogonal multiple access (NOMA) networks, the practical hardware impairments (HIs) and resource allocation is still a challenging problem. Most existing research on resource allocation algorithms for UAV communication is considered with the ideal hardware condition. However, the impact of HIs on system performance cannot be ignored, especially in the case of high bit rates. Considering the HIs, most studies are from the perspective of performance analysis. The resource allocation of UAV relay-assisted NOMA systems is investigated in this paper with HIs. We aim to maximize the sum rate by jointly optimizing the deployment of UAV and transmit power. To address this problem, we first transformed the mixed integer programming problem (MIPP) into a standard convex optimization problem based on successive convex approximation (SCA) technology. Then, we introduced the Lagrangian dual transformation and quadratic transform methods to solve the power allocation problem. Finally, we propose an effective iterative algorithm to achieve an approximate optimal solution. Numerical results demonstrate that the proposed algorithm achieved better performance in terms of the sum rate compared with other benchmark schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call