Abstract

Recently, wireless powered cooperative cognitive radio networks (CRNs), which combine the technologies of radio frequency (RF) energy harvesting and CR, have drawn great attention. In such networks, energy cooperation between the cognitive users (CUs) and the wireless powered primary users (PUs) can be performed, where the CUs can charge the PUs wirelessly in exchange for the spectrum access. Specifically, energy cooperation and information transmission is executed in two phases, where the CUs transmit their data signals and the PUs harvest energy from these signals in the first phase, and the PUs transmit their data using the harvested energy in the second phase. In particular, we consider two multiple access schemes for the CUs, namely non-orthogonal multiple access (NOMA) and time-division multiple access (TDMA). For both NOMA and TDMA, the PU sum-rate maximization problems under the minimum CU sum-rate constraint are first simplified by exploring particular problem structure, then are transformed to convex problems, and finally are solved optimally. The PU sum-rates of the two schemes are compared theoretically as well as numerically. It is revealed that the circuit power consumption at the CUs, the required minimum CU sum-rate, and the PU energy harvesting sensitivity and saturation thresholds play key roles in the PU performance comparison of the two schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.