Abstract

Both network function virtualization (NFV) and edge computing (EC), especially the latter, are attracting more and more attention in recent years. A growing number of network service providers are migrating their services from the cloud to the edge for better QoS services, while the recent researches on NFV also concentrate on deploying NFV services in edge computing networks. However, NFV deployment in edge networks is a troublesome challenge and is fairly alien from conventional NFV deployment problems in data centres. Edge network differs from the data center network in the following two aspects: firstly, edge nodes are constrained in computing capacity, and secondly, the network connections between edge nodes are unstable and dynamic, which may show large variance over time. This means edge computing should be designed for high-efficient use of physical edge nodes’ resources. To address the challenges above, we investigate a new NFV Service Chain Placement problem in edge computing environments (NSCP-EC) in this paper. We first prove that the NSCP-EC problem is NP-complete. Then we propose a new metric which can better measure the capacity utilization rate of physical resources, and analyze its advantages with details. Based on the new metric, we propose two heuristic but efficient algorithms called MINI and MINI-tree. To confirm the performance of the two algorithms, we conduct simulations. The result demonstrates that MINI gains an advantage over genetic algorithm (GA) and MINI-tree orevails over MINI in tree topology conditions in the aspects of physical resource utilization, acceptance rate and running time. Both theoretical analysis and simulation results confirm the feasibility of the algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call