Abstract

In present work, the use of a new hydrochar (HSPSHC) produced by the combined hydrothermal carbonization (co-HTC) of hazelnut and pistachio shells (HS and PS) as a sorbent material in tetracycline (TC) antibiotic removal from water was investigated. It was obtained from hydrothermal carbonization of HSPSHC, hazelnut and pistachio shells by mixing 1:1 by mass at 220 oC for 6 h. Mass yield, energy density and higher heating value parameters were calculated for HSPSHC, and the surface chemistry was characterised using Fourier transform infrared spectroscopy (FTIR). TC adsorption on HSPSHC was carried out by kinetic and isotherm studies using batch method. The experimental kinetic results were qualified in pseudo first-order (PFO) and second-order (PSO) kinetic equations and it was observed that the adsorption complied with the PSO kinetics. The experimentally obtained results were applied to Langmuir and Freundlich model equations and isotherm modeling was performed. The adsorption isotherm of TC on the prepared hydrochar was well fitted by the Langmuir equation, which yielded a maximum monolayer adsorption capacity of TC of qm: 137.06 mg/g at 323 K and pH 4.0 on the HSPSHC hydrochar. In addition, thermodynamic studies revealed that the adsorption of TC by HSPSHC is spontaneous and is an endothermic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.