Abstract
Sulphur (S) is incorporated into diverse primary and secondary metabolites that play important roles in proper growth and development of plants. In cereals, a fraction of the nitrogen (N) accumulated in developing grains is guaranteed by amino acid remobilization from vegetative tissues, a contribution that becomes critical when soil nutrients are deficient. Glutamine synthetase (GS) and amino acid transporters (AAT) are key components involved in N assimilation and recycling. The aim of the present study was to evaluate the effect of S availability on the expressions of HvGS and several selected HvAAT genes in barley plants and on the phloem exudation rate of amino acids. To this end, two independent experiments were designed to impose low S availability conditions to barley plants. Low S availability caused a decrease in the phloem exudation rate of amino acids as well as in the gene expression of all the HvGS genes and five of the six HvAAT genes analyzed. The strong correlation found between the phloem amino acid exudation rate and HvGS1-1, HvGS1-2, HvAAP7, and HvProT1 gene expression may indicate the participation of these genes in the regulation of amino acid remobilization through the phloem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.