Abstract

Sapropels—organic-matter rich layers—are common in Neogene sediments of the eastern Mediterranean Sea. The formation of these layers has been attributed to climate-related increases in organic-matter production1,2,3 and increased organic-matter preservation due to oxygen depletion in more stagnant bottom waters2,3. Here we report that eastern Mediterranean Pliocene sapropels4 contain molecular fossils of a compound (isorenieratene) known to be synthesized by photosynthetic green sulphur bacteria, suggesting that sulphidic (euxinic)—and therefore anoxic—conditions prevailed in the photic zone of the water column. These sapropels also have a high trace-metal content, which is probably due to the efficient scavenging of these metals by precipitating sulphides in a euxinic water column. The abundance and sulphur-isotope composition of pyrite are consistent with iron sulphide formation in the water column. We conclude that basin-wide water-column euxinia occurred over substantial periods during Pliocene sapropel formation in the eastern Mediterranean Sea, and that the ultimate degradation of the increased organic-matter production was strongly influential in generating and sustaining the euxinic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call